前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇流體動力學基礎范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。

關鍵詞光電子學,質子照相,綜述,質子加速器,磁透鏡
AbstractHigh-energyflashradiographyisthemosteffectivetechniquetointerrogateinnergeometricalstructureandphysicalcharacteristicofdensematerials.Itisshownthathigh-energyprotonradiographyissuperiortohigh-energyx-rayradiographyinpenetratingpower,materialcompositionidentificationandspatialresolution.ProtonradiographyistakenasaleadingcandidatefortheAdvancedHydrotestFacilitybytheUnitedStates.Theprojectandcurrentdevelopmentinhigh-energyprotonradiographyisreviewed.
Keywordsoptoelectronics,protonradiography,review,protonaccelerator,magneticlens
1引言
高能閃光照相始于美國的曼哈頓計劃(Manhattanproject),并持續到現在,它一直用來獲取爆轟壓縮過程中材料內部的密度分布、整體壓縮的效果以及沖擊波穿過材料的傳播過程、演變和壓縮場的發展的靜止“凍結”圖像.這一過程非常類似于醫學X射線對骨骼或牙齒的透射成像.高能閃光照相有兩個顯著特點:首先,照相客體是厚度很大的高密度物質,要求能量足夠高;其次,客體內的流體動力學行為瞬時變化,要求曝光時間足夠短.
目前,世界上最先進的閃光照相裝置是美國洛斯•阿拉莫斯國家實驗室(LANL)的雙軸閃光照相流體動力學試驗裝置(DARHT)[1].它是由兩臺相互垂直的直線感應加速器組成的雙軸照相系統,一次實驗能從兩個垂直方向連續拍攝4幅圖像,并且在光源焦斑和強度方面都有提高.但是,DARHT也僅有兩個軸,這是獲得三維數據的最小視軸數目,最多只能連續拍攝4幅圖像,不能進行多角度多時刻的輻射照相,獲得流體動力學試驗的三維圖像.而且DARHT的空間分辨率受電子束斑大小的制約.由于電子相互排斥,電子束不能無限壓縮,束流打到轉換靶上,產生等離子體,使材料熔化,這在一定程度上擴展了束斑直徑,從而使X射線光斑增大.估計最小的電子束直徑為1—2mm,制約了空間分辨率的提高.
研究人員希望實現對流體動力學試驗進行多角度(軸)、每個角度多時刻(幅)的輻射照
相,從而獲得流體動力學試驗的三維動態過程圖像.l995年,美國LANL的科學家ChrisMorris提出用質子代替X射線進行流體動力學試驗透射成像[2].首次質子照相得到的圖像,其非凡的質量出乎發明者的預料.后續的研究和實驗也確認了這項技術的潛在能力.據Morris回憶,20世紀90年代初期武器研制計劃資助了一項中子照相研究.其立項的主要思想就是利用高能質子、中子和其他強子的長平均自由程,使其成為閃光照相的理想束源.SteveSterbenz從這個思路出發,研究了使用中子照相進行流體動力學試驗診斷的可能性.然而即使使用質子儲存環(PSR)的強脈沖產生中子,中子通量都不足以在流體動力學試驗短時間尺度下獲得清晰的圖像.當時的洛斯•阿拉莫斯介子物理裝置(LAMPF)負責人GerryGarvey聽到這種意見的第一反應是“為什么不用質子?”Morris將這些思想統一起來,利用高能質子束實現流體動力學試驗診斷的突破,就是水到渠成的事[3].Morris指出:質子照相的實施應歸功于現代加速器具有產生高能質子和高強度質子的能力.促使發展質子照相技術最重要的一步是TomMottershead和JohnZumbro提出的質子照相所需的磁透鏡系統[4],以及NickKing在武器應用中發展改進的快速成像探測系統[5].
高能質子束為內爆物理研究提供了堪稱完美的射線照相“探針”,因為其平均自由程與流體動力學試驗模型的厚度相匹配.射線照相信息通過測量透過客體的射線投影圖像來獲取.如果輻射衰減長度過短,則只有客體外部邊界能夠測量;如果輻射衰減長度過長,則沒有投影產生.質子照相為流體動力學試驗提供了一種先進的診斷方法.
2質子與物質相互作用機制
高能質子與物質相互作用的機制是質子照相原理的基礎.首先,需要從質子與物質的相互作用出發,對質子在物質中的穿透性和散射過程進行分析研究.
所有質子都在被測物質內部并與其發生相互作用.質子與物質的相互作用分為強作用力和電磁作用力[6].強作用力是短程力,質子與核的強作用力分為彈性碰撞和非彈性碰撞兩種:
如果是彈性碰撞,以某種角度散射的質子保持其特性和動量,質子因受核力的強大作用,會偏轉很大角度,這種現象叫做核彈性散射(如果采用角度準直器,這部分貢獻可以忽略);
如果是非彈性碰撞,質子被吸收,也就是說,損失大部分能量分裂核,產生亞原子粒子——π介子.當質子能量達到GeV量級,質子與原子核的強相互作用占主導地位.質子與物質原子核中的質子和中子發生非彈性核相互作用,造成質子束指數衰減,其衰減規律可表示為
NN0=exp-∑ni=1liλi,(1)
其中N0,N分別為入射到被測物體上的質子通量和穿過被測物體的質子通量;λi和li分別為第i種材料的平均自由程和厚度.當質子能量達到GeV量級,核反應截面幾乎不變,單就穿透能力而言,質子能量達到GeV量級就足夠了.核反應截面不變有利于質子照相的密度重建,因為質子在客體中的散射過程可能導致質子能量發生變化.
由于質子帶電,它也通過長程電磁作用力與物質相互作用.當質子能量達到GeV量級時,電磁作用只能產生很小的能量損失和方向變化:
質子與原子核的庫侖力作用稱為彈性散射,穿過原子核的每個質子,即使和核并不接近,也能導致質子方向發生小的變化,每個小散射效應可以累積,這種現象叫做多重庫侖散射.多重庫侖散射的理論由EnricoFermi在20世紀30年代建立.質子與原子核之間的庫侖力作用發生多重庫侖散射,多重散射可以近似用高斯分布表示:
dNdΩ=12πθ20exp-θ22θ20,(2)
式中θ0為多次散射角的均方根值,可用下式表示:
θ0≈14.1pβΣniliRi,(3)
式中p為束動量,β是以光速為單位的速度,Ri是材料的輻射長度,其值近似地表示為
Ri=716AZ(Z+1)ln(287/Z),(4)
其中A是原子量,Z是原子序數.多重庫侖散射的結果很重要,特別是對重物質,最終導致圖像模糊.另一方面,因為Ri與材料的原子序數有關,也正是這個特性使質子照相具有識別材料組分的獨特能力[7].
質子和電子之間也會產生庫侖力作用,通常是非彈性的.因為電子質量與質子相比很小,庫侖力的作用使電子方向和速度產生躍變,而對質子的方向和能量只產生緩變.也就是說,質子通過電離原子(把電子擊出軌道),損失小部分能量.這種作用不會導致質子運動方向大的改變,但會導致質子能量的減少.20世紀30年代著名的貝特-布洛赫(Bethe-Bloch)公式很好地解釋了這種機制.能量損失依賴于質子束能量,能量損失速率與它的動能成反比.質子束穿過厚度為l的材料時,能量損失為
ΔT=∫l0dTdldl≈dTdll.(5)
當質子能量達到GeV量級,dT/dl的值幾乎與動能無關.如果E和T以m0c2為單位,p以m0c為單位,則
E=T+1,E2=P2+1.(6)
因此,能量損失引起的動量分散為
δ=Δpp=dpdTΔTp=T+1T+2ΔTT.(7)
質子通過物體后損失能量,發生能量分散.磁透鏡對不同能量的質子聚焦位置不同,也將導致模糊,這就是所謂的色差[8].
3質子照相原理
質子照相原理與X射線照相原理都是通過測量入射到被測物體上的粒子束衰減來確定被測物體的物理性質和幾何結構.
由于多重庫侖散射,穿過被照物體的質子束有不同的散射方向,形成一個相對于入射方向的錐形束,需要磁透鏡系統才能成像.如果質子照相的模糊效應持續存在的話,質子照相的潛力可能永遠不會被發掘出來.1995年,Morris發現磁透鏡能使質子聚焦進而消除模糊效應,最初進行的實驗證實了他的觀點的正確性.后來,LANL的另一位物理學家JohnZumbro改進了磁透鏡系統的設計方案,稱為Zumbro透鏡[4].
Zumbro透鏡的主要優點是它的消色差能力.加速器產生質子束并非是單一能量的束流,實驗客體對質子的散射增加了質子能量的分散,不同能量的質子具有不同的焦距,導致圖像模糊.基于這樣的考慮,Zumbro采用在入射質子束的路徑上增加一個匹配透鏡(matchinglens),匹配透鏡的設計使得入射到被測物體上的質子束具有角度-位置關聯,即質子與透鏡光軸夾角與質子離軸的徑向距離成正比.而且,角度-位置的關聯系數與成像系統磁透鏡的設計有關[9].這樣,可以消除由能量分散引起圖像模糊的主要色差項.
剩余的色差項為
x=-x0+Cxθ0δ,(8)
式中Cx為透鏡的色差系數,θ0為多重庫侖散射角,δ為動量的分散.由(3)式和(7)式可知,多重庫侖散射角和動量的分散都與入射質子的能量成反比.因此,為了盡可能減小色差對空間分辨率的影響,質子束的能量越高越好.高能量意味著大規模和高造價,根據空間分辨率隨能量的變化趨勢以及大尺度流體動力學試驗的精度要求,LANL為先進流體動力學試驗裝置(AHF)建議的質子能量為50GeV.
質子照相技術的關鍵之處在于其獨特的磁透鏡系統.圖1給出了LANL質子照相磁透鏡成像示意圖[10].首先,質子束通過金屬薄片擴散,再經過匹配透鏡照射到客體(匹配透鏡除了減小色差以外,還可以使質子束在擊中物體前發散開來,以便覆蓋整個物體,避免了使用很厚的金屬作為擴束器),這部分稱為照射(illuminator)部分;接著是三個負恒等透鏡組,分別是監控(monitor)透鏡組、兩級成像透鏡組.
TomMottershead和JohnZumbro論證了可以根據庫侖散射角的不同,在透鏡系統的某個位置(傅里葉平面),可以將不同的散射質子束區分開來.在傅里葉平面,散射角等于0的質子位于中心,散射角越大,半徑越大.離開這個透鏡后,質子就能在空間上聚焦.如果在這個位置平面放置角度準直器,可以將某些散射角度的質子束準直掉,對允許的角度范圍進行積分,得到總質子通量為
NN0=exp-Σniliλiexp-θ2min2θ20-exp-θ2max2θ20.(9)
第一個角度準直器允許通過的角度范圍為[0,θ1cut],則第一幅圖像接收到的質子通量為
NN0=exp-Σniliλi1-exp-θ21cut2θ20.(10)
第二個角度準直器允許通過的角度范圍為[0,θ2cut],且θ2cut<θ1cut,則第二幅圖像接收到的質子通量為
NN0=exp-Σniliλi1-exp-θ22cut2θ20.(11)
角度準直器的使用增加了圖像的對比度.根據物體的光程調節角度范圍,可獲得最佳的圖像對比度.通過分析兩幅圖像得到的數據,可以提供密度和材料組分的信息.
考慮到探測器記數服從泊松統計分布,面密度的測量精度要達到1%,則圖像平面上每個像素需要的入射質子數應為104,每幅圖像大約需要的質子數應為1011.如果一次流體動力學試驗需要獲得12個角度,每個角度20幅圖像,則每次加速的質子總數達3×1013個.4質子照相裝置
質子照相技術自1995年首次在美國LANL被論證以來,LANL和布魯克海文國家實驗室(BNL)進行了大量的實驗,其中很多次是和圣地亞(SNL)、勞倫斯•利弗莫爾(LLNL)以及英國原子武器研究機構(AWE)合作完成的,直接針對流體動力學有關的關鍵科學問題[11].實驗主要分為兩部分:一是在LANL的洛斯•阿拉莫斯中子散射中心(LANSCE)上進行的小型動態實驗(質子能量800MeV),小型動態實驗主要包括:高能炸藥的爆轟特性實驗、金屬和材料對強沖擊加載的復雜響應實驗(包括失效、不穩定性和微噴射等)以及驗證內爆過程后期的材料動力學和材料狀態的實驗;二是在BNL的交變同步加速器(AGS)上進行的用于診斷大尺度流體動力學試驗的高能質子照相實驗(質子能量12GeV或24GeV).進行高能質子照相的目的是:發展高能質子照相所需技術,驗證采用質子照相進行大尺度流體動力學試驗的能力,以及與DARHT進行某些直接的比較.對于厚的流體動力學試驗客體而言,質子照相的質量遠好于DARHT的照相結果.如果DARHT要獲得同樣的照相細節,需將其劑量提高100倍.而且比照片質量更重要的是,質子照相具有定量的特性.質子照相因其低劑量、定量的密度重建、亞毫米空間分辨率以及超過每秒500萬幅的多幅照相頻率等特性而成為新一代流體動力學試驗閃光照相設施的必然選擇.
LANL為AHF建議的質子照相裝置包括質子束源、照相布局、磁透鏡成像及探測器系統,圖2給出了質子加速器和分束系統方案[12].質子束源是一臺能量為50GeV的同步加速器和12條束線,包括一臺H-直線加速器注入器,一臺3GeV的增強器和一臺50GeV的主加速器.采用快速踢束調制器將質子束從3GeV增強器注入50GeV主加速器,經過同步傳輸系統和使用分束器將質子平均分成多個子束.最后從多個方向同時照射到實驗靶上.質子束穿過實驗靶后,磁透鏡系統對質子束信號進行分類,由探測系統記錄數據.實驗布局的復雜性都遠遠超出了閃光照相實驗.
圖2LANL的質子加速器和分束方案
LANL提出的質子照相裝置的主要指標:質子束能量達到50GeV,空間分辨率優于1mm,密度分辨率達到1%;每次加速的質子總數達3×1013個,每幅圖像的質子數達到1×1011個;每個脈沖的間隔最小為200ns,質子到達靶的前后誤差不超過15ns;每個視軸可連續提供20個脈沖,視軸數12個,覆蓋角度達165°.這樣,一次流體動力學試驗可獲得12個角度,每個角度20幅圖像.
2000年,LANL給出了發展質子照相的研究計劃.整個裝置預計投資20億美元,其中質子加速器系統使用原有的部分設備,需要5678.8萬美元.裝置的建造時間需要10到15年,分幾個階段進行:2007年前,建造50GeV同步加速器、2個軸成像系統和靶室1;2008—2009年,建造3MeV增強器(booster)、4個軸成像系統和靶室2;2010—2011年,8—12個軸成像系統.從目前的調研情況來看,原計劃2007年前完成的任務沒能按期完成.因此,這個計劃要推遲.最新的研究計劃未見報道.
5質子照相與X射線照相的比較
我們通過與現有最好的流體動力學試驗裝置——DARHT比較來說明質子照相的特點和優勢[13].
(1)三維動態照相.由于質子加速器固有的多脈沖能力和質子束分離技術,因此,質子照相能夠提供多個時刻、多個方向的三維動態過程圖像.質子照相能夠提供超過20幅的圖像,這種多幅能力可得到內爆運動過程的動態圖像.而DARHT沿一個軸只能得到4幅圖像,沿其垂直軸得到1幅圖像.另外,質子照相不需要轉換靶,保證了多次連續照相不受影響,而X射線照相由于需要轉換靶,需要考慮束斑的影響.
(2)精細結構分辨.高能質子穿透能力強,其穿透深度和流體動力學試驗模型達到理想匹配.相比之下,X射線只有在4MeV能量時才能達到最大圖像對比度,此時其穿透能力只有高能質子的1/10.質子照相能測定密度細微變化的另一個理由是質子散射能得到控制.散射質子可以被聚焦形成視覺上無背景、對比鮮明的圖像.而實驗客體對X射線形成的大角度散射無法控制,降低了照相的精度和靈敏度.
(3)質子對密度和材料都比較敏感,可以分辨密度差別不大的兩種物質.實際上,質子散射的利大于弊,它能用于識別物質的化學組成.利用兩個相同的磁透鏡系統和不同孔徑準直器串聯組成的兩級成像系統,通過對兩種不同準直孔徑得到的數據進行分析,可以提供材料的密度和組分信息.而X射線只對密度敏感,故分辨不出密度差別不大的兩種物質.
(4)曝光時間可調.質子加速器能夠產生持續時間為100ps、間隔為5ns的“微小脈沖束”,每幅圖像可用8—20個脈沖的時間進行曝光.因此,質子照相可任意選定曝光時間和間隔.內爆初期,研究人員可以選擇較長的曝光時間和間隔,對較慢的運動進行連續式“凍結”照相.當內爆速度變快時,可以縮短曝光時間.DARHT的脈沖時間由電路決定,一旦脈沖的時間間隔和持續時間固定,只能以固定的時間間隔照相,研究人員只能指定第一幅圖像的時間.
(5)探測效率高.質子是帶電粒子,直接與探測介質中的電子相互作用產生信號,因此,很薄的探測器就能將質子探測出來.如此薄的探測介質接收不到被探測客體中產生的中子和γ光子.
(6)空間分辨率高.X射線照相是X射線穿過樣品打到閃爍體或底片成像,沒有聚焦過程(事實上,對4MeV的X射線還沒有聚焦辦法),圖像的空間分辨率由光源的尺寸(焦斑)決定.質子散射雖然也會引起圖像模糊,但質子散射是可控的,可以通過磁透鏡聚焦成像.磁透鏡不僅能聚焦質子,而且能減小次級粒子的模糊效應.但不同能量質子的聚焦不同,也將導致模糊.Zumbro改進了透鏡系統,消色差提高了圖像品質.對于小尺寸物體的靜態質子照相,空間分辨率可到100μm,最近的質子照相實驗已達到15μm,并有達到1.2μm的潛力.
6結束語
質子照相是美國國防研究與基礎科學相結合而誕生的高度多用性的發明.質子照相若不是與國防基礎研究共同立項,也絕不會有如今的發展.雄厚的武器實驗基礎能持續提供人員和創新技術.質子照相極大地提高了流體動力學試驗的測量能力.它所具有的高分辨率能夠精細辨別內爆壓縮的細節,多角度照相有利于建立完整的流體動力學模型,多幅連續照相更加容易判斷沖擊波和混合物隨時間變化的情況.近年來,科學家們加緊了對高能質子照相的研究.目前,X射線照相仍然是流體動力學試驗的主要設備.總有一天,質子照相將代替X射線照相并對流體動力學試驗進行充分解釋.
參考文獻
[1]BurnsMJ,CarlstenBE,KwanTJTetal.DARHTAcceleratorsUpdateandPlansforInitialOperation.In:Proceedingsofthe1999ParticleAcceleratorConference.NewYork,1999.617
[2]GavronA,MorrisCL,ZiockHJetal.ProtonRadiography.LosAlamosNationalReport,LA-UR-96-420,1996
[3]MorrisCL.ProtonRadiographyforanAdvancedHydrotestFacility.LosAlamosNationalReport,LA-UR-00-5716,2000
[4]MottersheadCT,ZumbroJD.MagneticOpticsforProtonRadiography.In:Proceedingsofthe1997ParticleAcceleratorConference.VancouverBC,1997.1397
[5]KingNSP,AblesE,AlrickKRetal.Nucl.InstrumMethodsinphysicsresearchA,1999,424(1):84
[6]FishbineB.ProtonRadiographySharper“X-RayVision”forHydrotests.In:TheWinter2003IssueofLosAlamosResearchQuarterly.LosAlamosNationalLaboratory,2003
[7]AufderheideIIIMB,ParkHS,HartouniEPetal.ProtonRadiographyasaMeansofMaterialCharacterization.LawrenceLivermoreNationalLaboratory,UCRL-JC-134595,1999
[8]AmannJF,EspinozaCJ,GomezJJetal.TheProtonRadiographyConcept.LosAlamosNationalLaboratory,LA-UR-98-1368,1998
[9]BarbaraB,AndrewJJ.ChromaticallyCorrectedImagingSystemsforCharged-ParticleRadiography.In:Proceedingsofthe2005ParticleAcceleratorConference.Knoxville,2005.225
[10]AndrewJJ,DavidBB,BarbaraBetal.Beam-DistributionSystemforMulti-AxisImagingattheAdvancedHydrotestFacility.In:Proceedingsofthe2001ParticleAcceleratorConference.Chicago,2001.3374
[11]MorrisCL,HopsonJH,GoldstoneP.ProtonRadiography.LosAlamosNationalLaboratory,LA-UR-06-0331,2006
流體力學是萃取工藝極其重要的理論基礎,而石油地質師和工程師在開始鉆探之前為了尋找油氣儲層,設計最好的抽取方法,必須具備油氣儲層中流體動力學的知識。本書為工程師和地質師完成這些任務,提供基本的指導,給出關于流體流動、巖石性質以及其他許多日常亟需進行的計算和公式。
本書中描述的方法是獨特的,直到目前為止還沒有表述成書的體裁形式。讀者現在有能力來對世界上的最有名的油田(從美國到俄羅斯和亞洲)進行評述。
本書對有經驗的工程師、科學家和學生都很有用,將成為工作在石油工程上游領域的地質師、工程師和學生的必備書。
本書共分12章:1.活動帶的含油區中的流體動力學;2.在阿爾卑斯活動帶盆地的地質和油氣顯示;3.阿爾卑斯活動帶盆地的水溫地球化學場;4.阿爾卑斯活動帶盆地的地壓場;5.阿爾卑斯活動帶盆地的地溫場;6.阿爾卑斯活動帶盆地今日的地球-流體-動力學;7.南里海盆地的碳氫生成、遷移和集聚;8.阿爾卑斯活動帶盆地的油氣顯示的形成、地點和預報中的地球-流體-動力學機理和因素;9.阿爾卑斯活動帶盆地的商業性油氣顯示的定性標準和定量特性;10.阿爾卑斯活動帶盆地的油氣顯示的地質-數學模型;11.局部構造和油氣顯示主要區域中油氣顯示的地球-流體-動力學參數;12.進行區域情況分析的企圖,在勘探和估價作業(以南里海盆地為例)的計劃和行動中戰略決策的概念性估價和步驟。
M. Z. Rachinsky是俄羅斯自然科學研究院的教授,曾獲2006Kapitsa杰出科學成就獎;曾經是阿塞拜疆州石油研究院油氣地質系的教授。
V. Y. Kerimov是The Gubkin Russian State University of Oil and Gas油氣勘探技術方法系的教授和系主任。
本書主要討論在科學研究及工程實踐中遇到的流體問題中偏微分方程的變換與求解問題,書中所討論的內容在航空航天、生物力學、化學、機械工程、流體力學及地球物理學流動等領域均得到了廣泛應用。
本書一共分為8章。1,介紹了復數的基本知識、解析函數、積分與柯西定理、實積分的應用等內容;2,介紹了Gamma函數,一些用微分方程定義的函數如Legend-re函數、Bessel函數、超幾何函數、cheby―shev函數和airy函數等特殊函數及部分函數的積分;3,特征值問題與特征函數展開。內容包括Rayleigh判據,Sturm―Li―ouville問題,特征函數展開及應用實例,非標準特征值問題,Fourier-Bessel級數;4,格林函數邊值問題,介紹源項與基本解、有源項的球殼導熱問題、格林函數一階與高階問題、伴隨與自伴問題、一階系統:格林矩陣、特征函數展開及實例;5,主要介紹Laplace變換及逆變換、雙邊Laplace變換;6,Fourier變換及逆變換、Mellin變換。7,主要介紹了背風波、遠場動量尾跡、Kelvin-Helmholtz不穩定度、平板Couette流動穩定性等物理問題中的微風方程的應用;8,積分的漸進展開,主要介紹漸進展開基本知識、部分積分法、Laplace積分、Watson引理、最速下降法、穩相法及Kelvin結果等內容。
本書兩位作者曾多年從事相關領域研究生課程教學工作,具有豐富的教學經驗,書中很多內容就是在教學筆記的基礎上整理編寫出來的。I.H.赫倫教授曾在哈佛大學任教,美國西北大學、馬里蘭大學、麻省理工學院和美國Los Alamos國家實驗室等單位進行訪問研究,現在任職于倫斯勒理工學院,主要從事流體流動穩定性理論研究;M.R.福斯特是俄亥俄州立大學榮譽退休教授,曾在里海大學、倫敦大學學院、鄧迪大學和曼徹斯特大學等進行訪問研究,目前是倫斯勒理工學院兼職教授,獲得過多個教學和科研獎項,是《流體動力學》、《流體物理學》、《力學學報季刊》和《應用數學》等國際雜志的審稿人,專業是理論流體動力學。
本書結構清晰,各種概念、定理解釋透徹,書中結合實際物理問題安排了大量實例,十分便于讀者理解理論知識,既可以作為非數學專業學生運用數學方法研究流體力學課程的教科書,也可以作為數學專業的輔助課程參考書,同時還可以作為相關領域研究人員的參考資料。
關鍵詞:區域成礦 內容 意義 趨勢 問題
一、區域成礦學研究的內容與意義
(一)區域成礦學的基本研究內容
近幾十年來,地質專家、學者們提出來了一系列區域成礦理論和觀點。隨著區域成礦學理論的不斷深入發展,它在地質礦產找礦過程中發揮的作用也越來越大。區域成礦學的研究內容主要包括以下幾個方面:區域地層、構造、巖漿和變質作用及地質發展;含礦巖石建造的種類、形成與分布;區域地球化學特征;區域地質流體;已知礦種、礦床類型和成礦條件,成礦模式及成礦特征;區域地質異常;區內的成礦系統;礦產信息庫的建立,區域成礦規律和成礦預測圖的編制;總結區域成礦規律與特征,明確進一步研究的問題與方法;區域礦產資源潛力評價。通過以上研究工作獲取對地質作用過程的基本認識,最后進行地質構造綜合研究工作,分析有利于成礦的地質構造環境,編制綜合地質構造圖件,進一步說明地質構造特征,分析有利于成礦的地質構造。
(二)地質構造特征的研究工作是礦產預測工作的基礎
成礦作用是地質作用的組成部分,也是地質作用的產物。區域成礦學主要研究:成礦作用與地質作用的關系,最終把成礦作用的研究有效地融合到地質作用研究過程中去。現代成礦學研究表明,成礦作用在空間上經常產生于各類地質構造的邊緣部位以及變異部位。重要的礦產主要分布在板塊與板塊不同組成部位的結合帶或者邊界地帶。在時間上一般與地質構造轉換階段密切相關,礦產地一般成群、成帶分布,成礦帶的規模和地質構造邊緣帶和變異帶相當。因此地質構造特征的研究工作是礦產預測工作的基礎,也是必需的途徑。
二、區域成礦學研究發展趨勢
隨著對礦產資源需求規模和種類的擴大,成礦預測和找礦工作將繼續受到重視。同時,由于地球科學整體進步、前沿領域研究取得突破性成就,成礦學研究也必將取得較快進展,我國區域成礦研究發展中,以下兩方面最受關注。
(一) 成礦動力學研究
在地質科學的許多研究領域中動力學研究是一個大方向,而成礦學與動力學的結合使區域成礦研究達到一個新的水平。它主要從以下兩方面展開:
1、開展單一礦床成礦過程的動力學機制研究。即對構造成礦流體運移及產生物質之間反應和交換的動力學研究。主要集中在對構造成礦流體運移中地球化學反應的熱力學模型的建立,成礦物質形成和分布規律的反演和預測,把整個構造成礦流體動力學變量的變化特征進行研究。
2、開展區域成礦動力學的數值模擬研究
研究形成礦床集中區的地球動力學背景,目前仍以造山帶和盆地為突破口。它以巖石圈變形研究為基礎,要求深入研究巖漿作用發生及發展的動力機制,加強研究構造演化過程中流體的遷移和分布,探索大規模成礦作用的動力環境合成礦規律。隨著計算機技術的廣泛應用,區域成礦動力學機制的研究已由定性變為定量,靜態變為動態,進行數值模擬成礦過程中的構造作用過程,完全數值模擬整個構造成礦的形成過程和動力學的過程成為可能。這久突破了構造地質作用過程中時空背景及環境條件復雜性的約束,對成礦的預測和礦產資源的勘查有十分重要的意義!成礦動力學機制的研究最終體現的是地球各圈層相互之間作用的過程,也是今后成礦流體動力學所要反映的核心問題。
(二)區域成礦構造研究
陳國達提出了“多因復成礦床”成礦學理論,而區域成礦的研究正是在此基礎上開展。區域上成礦主要進行以下兩方面的研究:
1、對礦床成礦類型的研究。在成礦構造研究中,以構造為主要線索,劃分礦床的成礦類型,這些類型反映成礦物質來源的多樣性和成礦過程的長期性及復雜性。2、對區域成礦作用過程研究。開展區域構造一熱動力條件、主成礦期、礦床類型等研究,強調多成礦階段、多控礦因素、多物質來源的研究,特別是構造巖漿作用的研究。3、對不同級別的大地構造單元控制著不同級別的成礦構造域、成礦構造區的劃分、成礦專屬性的研究。同時注重對不同構造系進行不同級別的劃分,以利于正確劃分成礦構造域、成礦區,順利開展礦產資源預測和評估。
三、區域成礦不可忽視的問題
區域地質成礦是地質作用的一部分,其研究受到中外地質學家、礦床學家高度重視。伴隨著科學技術的不斷發展,地質找礦工作也逐漸向定量方面展開。但目前此項工作依舊還很薄弱。當前地質找礦工作中,針對不同礦種形成于不同的地質條件并受物理化學條件制約形成于不同深度,分門別類在同一地區不同深度上尋找不同礦種就成為一個不可忽視的問題。因為以往的地質找礦深度研究只注意從微量元素含量、元素共生組合進行研究,或使用礦物溫度計、礦物壓力計及氫、氧穩定同位素等研究成礦深度,卻忽視了同一礦種或緊密伴生礦種在成礦深度上的上限深度和下限深度的研究,以及同一地區乃至全球垂直方向的上限深度和下限深度的研究和對比。這樣就使得地質找礦缺少針對性和有效性,并造成人力、物力、財力的浪費,乃至對環境的嚴重破壞,盲目施工、盲目開采。
因為地質成礦在水平方向上和垂直方向上是有規律性的。舉例來說河北淶源縣王安鎮雜巖體多金屬,它的成礦規律:水平方向上,由巖體接觸帶向圍巖,成礦由含銅磁鐵礦礦化向鉛鋅礦化轉變,礦床類型由接觸交代型熱液型;垂直方向上,成礦也表現為有序性:早期形成溫壓較高的含銅磁鐵礦礦化,晚期形成溫壓較低的鉛鋅礦化。這說明鉛鋅礦化無論在水平方向還是垂直方向上均表現為一定的差異性,尤其是在垂直方向上的成礦深度表現為一定的深度范圍。然而,在地質成礦過程中,其它金屬成礦同樣具有這種現象和規律。這就要求我們在當前地質成礦中,除注重研究有關礦種的成礦系列、成礦規律、成礦條件、成礦構造環境,更要注重研究有關礦種形成的區域成礦深度及相關地質體剝蝕深度。只有這樣才能使地質找礦具有針對性、可比性,減少盲目性,提高找礦效率,并將取得較大的或重大的經濟效益,同時保護了生態環境。
參考文獻:
[1] P Laznlcka.成礦學的過去現在和將來.地學前緣1994
[2]張逸陽.區域成礦學及中國區域成礦特征研究[J].科技資訊.2008.3
[3]祁思敬.區域成礦學研究現狀與發展趨勢[J].西安工程學院學報.1999.1
關鍵詞:流體力學;教學模式;改革
作者簡介:楊衛波(1975-),男,湖北安陸人,揚州大學能源與動力工程學院,副教授;毛紅亞(1976-),女,湖北天門人,揚州大學財務處,會計師。(江蘇 揚州 225127)
中圖分類號:G642.0 文獻標識碼:A 文章編號:1007-0079(2013)23-0083-02
“流體力學”作為土木、機械、能源、動力、環境、化工等學科的一門主干技術基礎課程,由于其理論性強、概念抽象、方程繁瑣、難以理解與記憶,導致學生學習的難度較大,從而影響教學進程和專業人才培養的質量。因此,如何針對“流體力學”課程自身特點,結合專業建設目標,探索出一套新的適合各專業培養目標的流體力學教學模式具有非常重要的意義。本文結合工科院校學生的實際情況及筆者教學實踐與體會,從教學內容、教學方法及考核方式三方面對流體力學教學模式改革進行了深入的探析。
一、教學內容
1.教學內容的選擇
教學內容的選擇對于提高教學質量、改善教學效果具有重要的意義。根據教育心理學理論,[1]在教學中應把課程中具有廣泛遷移價值的科學成果作為教材的主要內容,從而可實現利用已有知識來同化現有知識的作用,提高學生的接受能力。“流體力學”作為大學工科專業的一門課程,雖然其內容相對比較陌生,但其所包含的基本知識卻貫穿于中學相關課程之中。如流體力學中的速度、壓力、壓強、質量守恒方程、能量守恒方程及動量守恒方程等,學生均在中學物理中均學過,因此在講述相關內容時可以將其與中學內容相聯系,從而提高學生的理解能力。又如在講述管路的串聯與并聯特性時,其流量、阻力及阻抗特性正好與中學物理中電學的串聯與并聯電路的電流、電阻特性一致,如果在講述之前引出中學的電路串并聯原理,則可大大加強學生對管路串并聯水力特性的理解能力。因此,根據學習遷移理論,將相關內容與學生已有知識進行對接,并闡述其相互之間的關系,不僅可以有效發揮學生利用所學知識來同化現有知識的作用,而且對于改善教學效果具有積極作用。
2.教學內容的編排
要合理編排教學內容就必須使教材結構化、一體化,以使構成教材內容的各要素具有科學、合理的邏輯關系。目前,國內“流體力學”課程的教學體系一般包括流體靜力學、流體動力學(理想流體流動與實際流體流動)、流動阻力損失、孔口管嘴管路流動及特殊流動現象等。每部分內容既獨立,同時各部分之間又有相互的聯系。為了使學生容易學習,可以按照流體力學實際應用路線由簡單到復雜的方式來編排教學內容。如可以從最簡單的流體靜力學部分開始,因為靜力學部分中學物理中已講授,生活中很常見,學生容易接受。由于靜止是相對的,運動才是絕對的,自然界流體應用中更多的是運動著的流體,讓學生明白這個道理后很自然將教學內容過渡到流體動力學部分,從而可提高學生繼續往下學習的興趣。在講述流體動力學部分時,先從簡單的一元理想流體運動部分著手,然后逐步過渡到多元理想流體流動及實際流體運動。在講到實際流體運動時,由于能量方程中出現了阻力損失項,這樣就很自然將內容過渡到流動阻力損失計算這一部分內容。由于生活中的復雜管路往往是由簡單管路串聯與并聯而構成,因此,復雜管路的水力特性(流量、阻力等)需要確定,這樣就可以根據流體力學實際應用需要將內容由阻力損失部分轉移到孔口管嘴管路流動部分。最后,根據各專業培養需要,選擇適合的特殊流動現象內容進行講解,以加強流體力學的實際工程應用。這種以流體力學實際應用路線由簡單到復雜作為主線的教學內容選擇模式,內容組織層次感較強,講起來更加引人入勝和重點突出,教學過程相對簡化。
3.教學內容的彈性化
教學內容彈性化有兩個方面的含義:一方面要根據每屆學生不同的知識背景和不同的定位要求,采用不同的表達方式,以滿足學生多樣化的學習需要。另一方面是要根據時代的發展,不斷更新教學內容,以適應最新科技發展的需要。[2]例如在“流體力學”教學過程中,為了讓學生更容易接受,可以刪去大量的數學公式推導,如流體連續性方程、動量方程、能量方程的推導等,這些內容對于學生是否掌握流體力學基本知識并無影響。又如,對于不同的學生群體,應根據學生今后的定位不同選擇適當的教學內容,對于高職高專的學生,由于其畢業后大多數要走出校門從事實際工作,因此,在講述時應側重于流體力學實際應用方面的知識。而對于普通本科院校的學生而言,畢業后有相當一部分的學生要繼續從事相關的研究工作(如考研等)。因此,應加強學生流體力學理論方面的教學與培養,以提高學生將來的研究能力。隨著時代的發展和計算機的普及,將計算機用于求解流體力學問題的計算流體力學已越來越顯示出其重要的作用。所以,流體力學教學中,適當介紹當今常用的計算流體力學商業軟件,如Fluent、Star-CD、CFX及Ansys等,以擴充學生的知識視野,為今后有意繼續深造的學生提供鋪墊。
4.教學內容與工程實際相結合
興趣是最好的教師。教育心理學[1]的研究表明:當學習內容與學生已有的知識和生活實際相聯系時,才能激發學生學習和解決問題的興趣。因此,在流體力學教學過程中,應結合專業目標盡可能多地介紹流體力學廣泛的工程應用背景,引導學生提高自主學習流體力學的興趣和積極性。如在講述流體靜力學中液體作用在曲面的總壓力計算時,可以介紹1998年特大洪水災害長江決堤事件等;在講到流體靜力學中平面總壓力計算時,可以適當引入長江三峽水壩閘門的設計與計算;在講到沿程與局部阻力損失[3]時,可以講述如何選擇水泵,并以每天生活用水管道供水為例來分析等;在講到動量方程應用時,引入如何確定彎管及分叉管路中水流對管道的沖擊力,從而可計算出管道支墩所受的推力;在講述畢托管時,可講述如何測量風管的風量與風壓,在講述傾斜式微壓計時,可與畢托管一起講述如何利用兩者來測量正壓與負壓風管段的動壓、靜壓及全壓等。任課教師在平時授課過程中,結合專業培養目標適當穿插講述一些發生在我們身邊的與流體力學有關的實例,使學生認識到流體力學在生活及工程中的重要性,激發其學習興趣,以提高教學效果。
二、教學方法
目前課堂授課中常用的教學方法主要有傳統教學模式與以多媒體技術為代表的現代教學模式。傳統教學模式是指教師通過口授、板書完成特定教學內容的一種課堂教學形式,該模式學生容易接受,可以達到預期教學目標。但缺乏創新與探索知識的功能,尤其是在當今知識快速更新的年代,更是面臨嚴峻的挑戰。現代教學模式是指在課堂教學中引入多媒體技術,通過形象逼真的動畫的運用,生動形象地展示教學內容,從而可以充分發揮學生學習的積極性,使教學方式形象生動,有利于培養學生的思維能力、想象能力和創造能力。
考慮到傳統與現代教學模式各自的優缺點,在流體力學教學過程中應將兩種教學方法有機結合起來。如在講述相關理論公式時,就以傳統的板書教學為主,對公式的推導和例題的講解,用板書的方式條理化,通過板書一邊寫、一邊對學生提問,一邊推導相關公式,讓學生參與到教學中,從而可以加強學生與教師間的互動,激發與調動學生的學習積極性。而在流體力學理論的工程應用部分則較多地采用多媒體課件,例如在講授層流與紊流[3]這部分內容時,單純地板書講解其概念很抽象,用多媒體課件展示雷洛實驗講解則直觀生動,容易理解。在講解孔口管嘴管路流動及虹吸現象時,用生動動畫顯示其流動全過程,可說明其流動過程中截面收縮及可能出現的真空現象,從而給學生留下深刻的印象。
三、考核方式
考核的作用主要是了解教師教與學生學的情況,及時發現問題以便改進。考核方式的合理性不僅能激發學生學習的興趣,同時還可以提高教學效果。“流體力學”作為一門理論性極強的基礎課程,傳統的考核通常采用平時考核與期末閉卷考試相結合的方式,兩者所占比例通常為30%與70%。平時考核主要是學生的出勤率與作業完成情況,而期末考試主要是卷面所取得的成績。這種考核方式存在一定的問題,不僅不能激發學生的學習熱情,在某種程度上還會使學生產生抵觸心理。由于流體力學中有大量的經驗公式和圖表,如阻力系數計算公式與莫迪圖、納維-斯托克斯方程等,若采取閉卷考試,則勢必要求學生背熟這么多的公式,容易陷入死記硬背的怪圈。
事實上,這部分內容的教學要求是讓學生能熟練應用這些公式和圖表解決工程實際問題,而不需要死記硬背。因此,在考核方式中可以嘗試平時開卷考核與期末閉卷考核相結合的考核方式。即將不適合閉卷考試的一些無法記憶而又要求學生掌握與應用的內容,放在平時教學中進行開卷考核,而將一些基本原理、基本概念、基本計算方法的考核放在期末閉卷考試中。這樣,一方面,通過平時不定期的考核能提高平時學生的出勤率,另一方面,通過平時考核也可以激發學生平時的學習興趣,提高學習效率;此外還可以通過考核及時發現問題,改善教學方法。通過這樣的考核方式,既能激發學生平時的學習興趣,同時還可以提高教學效果,考試結果能較真實地反映學生對本課程知識的掌握和應用能力。
四、結語
教學不僅是一門科學,也是一門藝術。每一種教學模式都有其特定的適用范圍和條件。流體力學作為工科院校相關專業的一門主干技術基礎課,由于其理論性強、概念抽象、經驗公式多,給其教與學帶來難度。如何根據專業特點將其與各專業培養目標進行有機結合,通過教學模式的探索使其教學融入到各專業人才培養中,將是“流體力學”教學模式改革的進一步目標。
參考文獻:
[1]譚頂良.高等教育心理學[M].南京:河海大學出版社,2006.
[2]劉立平,師少鵬.傳熱學課程教學的改革探索[J].高等農業教育,